Self-similarity of Siegel disks and Hausdorff dimension of Julia sets
نویسنده
چکیده
Let f(z) = ez + z, where θ is an irrational number of bounded type. According to Siegel, f is linearizable on a disk containing the origin. In this paper we show: • the Hausdorff dimension of the Julia set J(f) is strictly less than two; and • if θ is a quadratic irrational (such as the golden mean), then the Siegel disk for f is self-similar about the critical point. In the latter case, we also show the rescaled first-return maps converge exponentially fast to a system of commuting branched coverings of the complex plane.
منابع مشابه
Self-similarity of Siegel Disks and Hausdorr Dimension of Julia Sets
Let f (z) = e 2ii z + z 2 , where is an irrational number of bounded type. According to Siegel, f is linearizable on a disk containing the origin. In this paper we show: the Hausdorr dimension of the Julia set J (f) is strictly less than two; and if is a quadratic irrational (such as the golden mean), then the Siegel disk for f is self-similar about the critical point. In the latter case, we al...
متن کاملA Fast Algorithm for Julia Sets of Hyperbolic Rational Functions
Although numerous computer programs have been written to compute sets of points which claim to approximate Julia sets, no reliable high precision pictures of nontrivial Julia sets are currently known. Usually, no error estimates are added and even those algorithms which work reliable in theory, become unreliable in practice due to rounding errors and the use of fixed length floating point numbe...
متن کاملContinuity of the Hausdorff Dimension for Sub - Self - Conformal Sets ( Communicated
Self-similar sets and self-conformal sets have been studied extensively. Recently, Falconer introduced sub-self-similar sets for a generalization of self-similar sets, and obtained the Hausdorff dimension and Box dimension for these sets if the open set condition (OSC) is satisfied. Chen and Xiong proved the continuity of the Hausdorff dimension for sub-self-similar sets under the assumption th...
متن کاملBilipschitz Embedding of Self-similar Sets
This paper proves that the self-similar set satisfying the strong separation condition can be bilipschitz embedded into self-similar set with larger Hausdorff dimension, and it can be embedded into a self-similar set with the same Hausdorff dimension if and only if these two self-similar sets are bilipschitz equivalent.
متن کاملHausdorff Dimension and Its Applications
The theory of Hausdorff dimension provides a general notion of the size of a set in a metric space. We define Hausdorff measure and dimension, enumerate some techniques for computing Hausdorff dimension, and provide applications to self-similar sets and Brownian motion. Our approach follows that of Stein [4] and Peres [3].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998